Day 9: Mirage Maintenance

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • Code block support is not fully rolled out yet but likely will be in the middle of the event. Try to share solutions as both code blocks and using something such as https://topaz.github.io/paste/ , pastebin, or github (code blocks to future proof it for when 0.19 comes out and since code blocks currently function in some apps and some instances as well if they are running a 0.19 beta)

FAQ


🔒 Thread is locked until there’s at least 100 2 star entries on the global leaderboard

🔓 Unlocked after 5 mins

  • @corristo@programming.dev
    link
    fedilink
    811 months ago

    APL

    I finally managed to make use of ⍣ :D

    input←⊃⎕NGET'inputs/day9.txt'1
    p←{⍎('¯'@((⍸'-'∘=)⍵))⍵}¨input
    f←({⍵⍪⊂2-⍨/⊃¯1↑⍵}⍣{∧/0=⊃¯1↑⍺})
    ⎕←+/{+/⊢/¨f⊂⍵}¨p ⍝ part 1
    ⎕←+/{-/⊣/¨f⊂⍵}¨p ⍝ part 2
    
  • @itslilith@lemmy.blahaj.zone
    link
    fedilink
    7
    edit-2
    11 months ago

    (Cursed) Python

    I solved the actual thing recursively in Rust, but I decided that wasn’t cursed enough, so I present: Polynomial fitting!

    import numpy.polynomial.polynomial as pol
    
    with open("input.txt") as f:
      lines = list(map(lambda l: list(map(int, l.split(" "))), f.read().split("\n")))
    
    lo, hi = 0, 0
    
    for line in lines:
      for i in range(len(line)):
        poly, (r, *_) = pol.Polynomial.fit(range(len(line)), line, full=True, deg=i)
        if r < 0.0000000001:
          break
    
      lo += int(round(poly(-1)))
      hi += int(round(poly(len(line))))
    
    print(f"Part 1: {hi}")
    print(f"Part 2: {lo}")
    
  • janAkali
    link
    fedilink
    English
    6
    edit-2
    11 months ago

    Nim

    Part 1:
    The extrapolated value to the right is just the sum of all last values in the diff pyramid. 45 + 15 + 6 + 2 + 0 = 68
    Part 2:
    The extrapolated value to the left is just a right-folded difference (right-associated subtraction) between all first values in the pyramid. e.g. 10 - (3 - (0 - (2 - 0))) = 5

    So, extending the pyramid is totally unneccessary.

    Total runtime: 0.9 ms
    Puzzle rating: Easy, but interesting 6.5/10
    Full Code: day_09/solution.nim
    Snippet:

    proc solve(lines: seq[string]): AOCSolution[int] =
      for line in lines:
        var current = line.splitWhitespace().mapIt(it.parseInt())
        var firstValues: seq[int]
    
        while not current.allIt(it == 0):
          firstValues.add current[0]
          block p1:
            result.part1 += current[^1]
    
          var nextIter = newSeq[int](current.high)
          for i, v in current[1..^1]:
            nextIter[i] = v - current[i]
          current = nextIter
    
        block p2:
          result.part2 += firstValues.foldr(a-b)
    
  • cacheson
    link
    fedilink
    611 months ago

    Nim

    Pretty easy one today. Made a Pyramid type to hold the values and their layers of diffs, and an extend function to predict the next value. For part 2 I just had to make an extendLeft version of it that inserts and subtracts instead of appending and adding.

    • snowe
      link
      fedilink
      211 months ago

      how in the world are you getting top 1k with rust? sheesh!

      • @Sekoia@lemmy.blahaj.zone
        link
        fedilink
        411 months ago
        1. Setting up boilerplate beforehand, I only need to fill in the functions (and the return types)
        2. Really good parsing library (aoc_parse). Today my entire parsing code was parser!(lines(repeat_sep(i64, " ")))
        3. Iterators! Actually really ideal for AoC, where pipelines of data are really common. Today both the main part (sum of lines) and inner part (getting a vec of differences) can be done pretty easily through iterators

        Today was pretty ideal for my setup. In general I think Rust is really good for later days, because the safety and explicitness make small mistakes rarer (like if you get an element from a HashMap that doesn’t exist, you don’t get a None later down the road (unless you want it, in which case it’s explicit), you get an exception where it happened.

        I just really like Rust :3

      • @morrowind@lemmy.ml
        link
        fedilink
        311 months ago

        I guess I’ll have to take rustaceans who claim they’re more productive in rust than python seriously now

  • @morrowind@lemmy.ml
    link
    fedilink
    411 months ago

    Crystal

    recursion is awesome! (sometimes)

    input = File.read("input.txt")
    
    seqs = input.lines.map &.split.map &.to_i
    
    sums = seqs.reduce({0, 0}) do |prev, sequence|
    	di = diff(sequence)
    	{prev[0] + sequence[0] - di[0], prev[1] + di[1] + sequence[-1]}
    end
    puts sums
    
    
    def diff(sequence)
    	new = Array.new(sequence.size-1) {|i| sequence[i+1] - sequence[i]}
    
    	return {0, 0} unless new.any?(&.!= 0)
    
    	di = diff(new)
    	{new[0] - di[0], di[1] + new[-1]}
    end
    
  • snowe
    link
    fedilink
    4
    edit-2
    11 months ago

    Ruby

    !ruby@programming.dev [LANGUAGE: Ruby]

    I found today really easy thankfully. Hardest part was remembering the language features haha

    https://github.com/snowe2010/advent-of-code/blob/master/ruby_aoc/2023/day09/day09.rb

    edit: code golfing this one was easy too! man this day really worked out huh

        def get_subsequent_reading(reading)
          puts "passed in readings #{reading}"
          if reading.all?(0)
            reading << 0
          else
            readings = reading.each_cons(2).map do |a, b|
              b - a
            end
            sub_reading = get_subsequent_reading(readings)
            reading << (reading[-1] + sub_reading[-1])
            puts "current reading #{reading}"
            reading
          end
        end
        
        execute(1) do |lines|
          lines.map do |reading|
            get_subsequent_reading(reading.split.map(&:to_i))
          end.map {|arr| arr[-1]}.sum
        end
        
        
        def get_preceeding_readings(reading)
          puts "passed in readings #{reading}"
          if reading.all?(0)
            reading.unshift(0)
          else
            readings = reading.each_cons(2).map do |a, b|
              b - a
            end
            sub_reading = get_preceeding_readings(readings)
            reading.unshift(reading[0] - sub_reading[0])
            puts "current reading #{readings} #{sub_reading}"
            reading
          end
        end
        
        
        execute(2, test_only: false, test_file_suffix: '') do |lines|
          lines.map do |reading|
            get_preceeding_readings(reading.split.map(&:to_i))
          end.map {|arr| arr[0]}.sum
        end
    

    code golf

      a=->r{r.unshift(r.all?(0)?0:(r[0]-a[r.each_cons(2).map{_2-_1}][0]))}
      l.map{a[_1.split.map(&:to_i)]}.map{_1[0]}.sum
    
  • @hades@lemm.ee
    link
    fedilink
    3
    edit-2
    3 months ago

    Python

    from .solver import Solver
    
    class Day09(Solver):
    
      def __init__(self):
        super().__init__(9)
        self.numbers: list[list[int]] = []
    
      def presolve(self, input: str):
        lines = input.rstrip().split('\n')
        self.numbers = [[int(n) for n in line.split(' ')] for line in lines]
        for line in self.numbers:
          stack = [line]
          while not all(x == 0 for x in stack[-1]):
            diff = [stack[-1][i+1] - stack[-1][i] for i in range(len(stack[-1]) - 1)]
            stack.append(diff)
          stack.reverse()
          stack[0].append(0)
          stack[0].insert(0, 0)
          for i in range(1, len(stack)):
            stack[i].append(stack[i-1][-1] + stack[i][-1])
            stack[i].insert(0, stack[i][0] - stack[i-1][0])
    
      def solve_first_star(self) -> int:
        return sum(line[-1] for line in self.numbers)
    
      def solve_second_star(self) -> int:
        return sum(line[0] for line in self.numbers)
    
  • @__init__@programming.dev
    link
    fedilink
    311 months ago

    Python

    Easy one today

    code
    import pathlib
    
    base_dir = pathlib.Path(__file__).parent
    filename = base_dir / "day9_input.txt"
    
    with open(base_dir / filename) as f:
        lines = f.read().splitlines()
    
    histories = [[int(n) for n in line.split()] for line in lines]
    
    answer_p1 = 0
    answer_p2 = 0
    
    for history in histories:
        deltas: list[list[int]] = []
        last_line: list[int] = history
    
        while any(last_line):
            deltas.append(last_line)
            last_line = [last_line[i] - last_line[i - 1] for i in range(1, len(last_line))]
    
        first_value = 0
        last_value = 0
        for delta_list in reversed(deltas):
            last_value = delta_list[-1] + last_value
            first_value = delta_list[0] - first_value
    
        answer_p1 += last_value
        answer_p2 += first_value
    
    print(f"{answer_p1=}")
    print(f"{answer_p2=}")
    
  • @cvttsd2si@programming.dev
    link
    fedilink
    3
    edit-2
    11 months ago

    Scala3

    def diffs(a: Seq[Long]): List[Long] =
        a.drop(1).zip(a).map(_ - _).toList
    
    def predictNext(a: Seq[Long], combine: (Seq[Long], Long) => Long): Long =
        if a.forall(_ == 0) then 0 else combine(a, predictNext(diffs(a), combine))
    
    def predictAllNexts(a: List[String], combine: (Seq[Long], Long) => Long): Long = 
        a.map(l => predictNext(l.split(raw"\s+").map(_.toLong), combine)).sum
    
    def task1(a: List[String]): Long = predictAllNexts(a, _.last + _)
    def task2(a: List[String]): Long = predictAllNexts(a, _.head - _)
    
  • @mykl@lemmy.world
    link
    fedilink
    3
    edit-2
    11 months ago

    Dart

    I was getting a bad feeling when it explained in such detail how to solve part 1 that part 2 was going to be some sort of nightmare of traversing all those generated numbers in some complex fashion, but this has got to be one of the shortest solutions I’ve ever written for an AoC challenge.

    int nextTerm(Iterable ns) {
      var diffs = ns.window(2).map((e) => e.last - e.first);
      return ns.last +
          ((diffs.toSet().length == 1) ? diffs.first : nextTerm(diffs.toList()));
    }
    
    List> parse(List lines) => [
          for (var l in lines) [for (var n in l.split(' ')) int.parse(n)]
        ];
    
    part1(List lines) => parse(lines).map(nextTerm).sum;
    part2(List lines) => parse(lines).map((e) => nextTerm(e.reversed)).sum;
    
  • @mykl@lemmy.world
    link
    fedilink
    3
    edit-2
    11 months ago

    I even have time to knock out a quick Uiua solution before going out today, using experimental recursion support. Bleeding edge code:

    # Experimental!
    {"0 3 6 9 12 15"
     "1 3 6 10 15 21"
     "10 13 16 21 30 45"}
    StoInt ← /(+×10)▽×⊃(≥0)(≤9).-@0
    NextTerm ← ↬(
      ↘1-↻¯1..      # rot by one and take diffs
      (|1 ↫|⊢)=1⧻⊝. # if they're all equal grab else recurse
      +⊙(⊢↙¯1)      # add to last value of input
    )
    ≡(⊜StoInt≠@\s.⊔) # parse
    ⊃(/+≡NextTerm)(/+≡(NextTerm ⇌))
    
  • @pnutzh4x0r@lemmy.ndlug.org
    link
    fedilink
    English
    311 months ago

    Language: Python

    Part 1

    Pretty straightforward. Took advantage of itertools.pairwise.

    def predict(history: list[int]) -> int:
        sequences = [history]
        while len(set(sequences[-1])) > 1:
            sequences.append([b - a for a, b in itertools.pairwise(sequences[-1])])
        return sum(sequence[-1] for sequence in sequences)
    
    def main(stream=sys.stdin) -> None:
        histories   = [list(map(int, line.split())) for line in stream]
        predictions = [predict(history) for history in histories]
        print(sum(predictions))
    
    Part 2

    Only thing that changed from the first part was that I used functools.reduce to take the differences of the first elements of the generated sequences (rather than the sum of the last elements for Part 1).

    def predict(history: list[int]) -> int:
        sequences = [history]
        while len(set(sequences[-1])) > 1:
            sequences.append([b - a for a, b in itertools.pairwise(sequences[-1])])
        return functools.reduce(
            lambda a, b: b - a, [sequence[0] for sequence in reversed(sequences)]
        )
    
    def main(stream=sys.stdin) -> None:
        histories   = [list(map(int, line.split())) for line in stream]
        predictions = [predict(history) for history in histories]
        print(sum(predictions))
    

    GitHub Repo

  • @soulsource@discuss.tchncs.de
    link
    fedilink
    English
    211 months ago

    [Language: Lean4]

    This one was very easy, almost trivial. Lean4 did demand a proof of termination though, and I’m still not very good at writing proofs…

    I’m also pretty happy that this time I was able to re-use most of part 1 for part 2, and part 2 being a one-liner therefore.

    As always, here is only the file with the actual solution, some helper functions are implemented in different files - check my github for the whole project.

    Solution
    
    private def parseLine (line : String) : Except String $ List Int :=
      line.split Char.isWhitespace
      |> List.map String.trim
      |> List.filter String.notEmpty
      |> List.mapM String.toInt?
      |> Option.toExcept s!"Failed to parse numbers in line \"{line}\""
    
    def parse (input : String) : Except String $ List $ List Int :=
      let lines := input.splitOn "\n" |> List.map String.trim |> List.filter String.notEmpty
      lines.mapM parseLine
    
    -------------------------------------------------------------------------------------------
    
    private def differences : List Int → List Int
    | [] => []
    | _ :: [] => []
    | a :: b :: as => (a - b) :: differences (b::as)
    
    private theorem differences_length_independent_arg (a b : Int) (bs : List Int) : (differences (a :: bs)).length = (differences (b :: bs)).length := by
      induction bs <;> simp[differences]
    
    -- BEWARE: Extrapolate needs the input reversed.
    private def extrapolate : List Int → Int
    | [] => 0
    | a :: as =>
      if a == 0 && as.all (· == 0) then
        0
      else
        have : (differences (a :: as)).length < as.length + 1 := by
          simp_arith[differences]
          induction (as) <;> simp_arith[differences]
          case cons b bs hb => rw[←differences_length_independent_arg]
                               assumption
        a + extrapolate (differences (a :: as))
    termination_by extrapolate a => a.length
    
    def part1 : List (List Int) → Int :=
      List.foldl Int.add 0 ∘ List.map (extrapolate ∘ List.reverse)
    
    -------------------------------------------------------------------------------------------
    
    def part2 : List (List Int) → Int :=
      List.foldl Int.add 0 ∘ List.map extrapolate