• @grue@lemmy.world
    link
    fedilink
    English
    809 months ago

    FYI, the main innovations of these kite sails compared to traditional sailing ships are that it doesn’t need masts that get in the way of cargo handling and that it requires fewer crew. In other words, it’s not faster or anything; it’s just cheaper.

    • @barsoap@lemm.ee
      link
      fedilink
      269 months ago

      You also need vastly less sail area and the things are more reliable because wind gets quite a bit stronger and reliable at 100-300 metres up. The system actually isn’t new. AFAIU main reason for it not getting wide-spread adoption is that shipping lines, not ship owners, pay for fuel.

    • Liz
      link
      fedilink
      English
      159 months ago

      Modern cargo ships are so huge traditional sails wouldn’t provide enough force to push them around. Neither will these kites, mind you. But, supplemental energy will still be a bonus, and a kite can reach higher and sit in faster, more stable winds.

      • @grue@lemmy.world
        link
        fedilink
        English
        99 months ago

        Modern cargo ships are so huge traditional sails wouldn’t provide enough force to push them around.

        Believe it or not, “proportionality” is a thing. You make the ship bigger, you make the sails bigger to match. Simple! Granted, previously, making sails bigger was limited by the weight of the things when hoisted by men operating manual winches, but now we’ve got motors now to solve that, and higher strength-to-weight ratio materials, too.

        Point is: I maintain that, in principle, you could make a post-Panamax sailing ship – even a traditional fully-rigged one – if you really wanted to, and it would be capable of sailing at hull speed on wind power alone. It’s just that they don’t want to for reasons unrelated to technical feasibility.

        • @SomeoneSomewhere@lemmy.nz
          link
          fedilink
          89 months ago

          You’re assuming everything scales linearly, which is not necessarily accurate. The square-cube law rains on many people’s parades.

          • @grue@lemmy.world
            link
            fedilink
            English
            69 months ago

            I can see how you’d think that, but I’m really just asserting that these specific things scale well enough to still work at post-Panamax size.

            • nickwitha_k (he/him)
              link
              109 months ago

              A bigger challenge would be sourcing enough shantymen to be feasible. I’m not sure that the world has sufficient production capacity to provide the necessary rum for more than a handful of ships.

        • @merc@sh.itjust.works
          link
          fedilink
          39 months ago

          It would be really interesting to see a fully rigged ship with dozens of sails where the rigging was pulled by motors and controlled by computers rather than humans. It would also be interesting to see what they could do with modern materials. Nylon sails, carbon fibre masts, steel lines, etc.

          Having said that, I would bet that a real modern cargo ship would probably use fancy solid wing-style sails.

        • Lev_Astov
          link
          fedilink
          49 months ago

          You underestimate the force of wetted surface area resistance. The sail area needed to move a modern cargo ship at the snail’s pace of old sailing ships would be unmanageably large. You simply couldn’t hold enough sail area to get them near their current speeds. These hybrid sail concepts are nice, but all they do is save some fuel.

          • @merc@sh.itjust.works
            link
            fedilink
            19 months ago

            The longer the ship, the more masts you can add, so the length doesn’t really matter. What would matter is the width, but I don’t see why the sail surface area couldn’t scale with the ship’s surface area. Sure, it would be a huge amount of sail, but it’s a huge amount of steel.

            • Lev_Astov
              link
              fedilink
              19 months ago

              The resistance from the wetted surface area scales up a lot more quickly than the wind force does. You’d have to completely redesign the hull shape to try to compensate, significantly reducing internal cargo volume and still not getting the ship above a few knots of speed…

              • @merc@sh.itjust.works
                link
                fedilink
                19 months ago

                The resistance from the wetted surface area scales up a lot more quickly than the wind force does

                Really? Can you explain why?

                • Lev_Astov
                  link
                  fedilink
                  19 months ago

                  Digging up my old naval architecture notes I’m reminded that I was a bit wrong in pointing out the real problem. It’s the speed that causes an exponential increase in required effective horsepower, not the displacement. And it’s exponential by a cube factor, so doubling the speed typically requires about 8x the power.

                  So, you can make a giant ship move under wind power, but you can only ever get so much power from the wind, limited by how big you can effectively make your sails and all the wind turbulence issues that arise from that. Sailing ships never went very fast, so that speed is never going to get much above 4-10 knots, as horsepower requirements above that just start to skyrocket. And there are few merchants who will accept that kind of speed when the competition will get their goods to market 2-3x faster using engines. Even goods that can survive a longer voyage will lose out on profit to those that get to the best market the quickest.

                  The really neat thing about this is that the largest factor in creating this drag at higher speeds is actually the waves created by moving. You end up trying to sail upstream, essentially, as you outpace your wake. There’s a certain point where, if you’re going fast enough, the resistance goes back down a bit as you ride your own wake, but beyond that it’s a vertical line. There are some real clever things you can do to get around this with lighter sailboats, but anything hauling cargo is just too bogged down to try it.

                  • @merc@sh.itjust.works
                    link
                    fedilink
                    19 months ago

                    Digging up my old naval architecture notes

                    Nice, thanks for going to the trouble.

                    It’s the speed that causes an exponential increase in required effective horsepower, not the displacement

                    Is any of this dependent on the size of the ship?

                    limited by how big you can effectively make your sails and all the wind turbulence issues that arise from that

                    Is this a bigger problem with big sails? I can imagine with a really big airfoil sail it might be hard to get the ideal angle / shape. But, if it’s a square-rigged ship it seems like it would be less sensitive to turbulence because it’s not an airfoil?

                    Sailing ships never went very fast, so that speed is never going to get much above 4-10 knots

                    And a modern cargo ship goes about 20 knots, right? But, does that mean that you could get maybe 16 knots out of the engine and 4 from the wind? Or is it that the wind can supply 1 MW of power, which is enough to move at 4 knots, but if you want to move at 20 knots you need 30 MW of power, so the wind would only supply about 3% of what you need, so it might not be worth it for all the added complexity?

                    Even goods that can survive a longer voyage will lose out on profit to those that get to the best market the quickest.

                    And, because petroleum-based fuel is very cheap because you don’t have to pay for the impact it causes, you can get an incredibly powerful engine that doesn’t cost an absurd amount to run. So, the additional cost to ship things at 30 knots using vast amounts of very dirty diesel is low enough that it’s still worth it?

                    You end up trying to sail upstream, essentially, as you outpace your wake

                    Yeah, I read about that, and how at one speed your bow and stern are both at wave peaks so it’s very efficient, but if you go faster your bow is a peak and your stern is a trough and that’s the worst situation.

                    If you wanted to go post-apocalypse mode though, is there any size-scaling thing related to ships that means that big ships are impossible to scale as sailing ships? Or if you can scale the sails up with the size of the ship, could you have an enormous post-Panamax sailing ship with absurd sized sails and a ridiculous sized keel that would cruise around at the same speed as the cargo sailing ships of old? Imagine seeing one of the biggest of the big cargo ships of today but rigged for sail power only. Either with a crew of 5000 post-apocalyptic refugees-turned-sailors handling the absurdly complex sails, or, with a computer in charge with hundreds of different motors all making continuous tiny adjustments to keep dozens of sails all set up perfectly.

        • Liz
          link
          fedilink
          English
          39 months ago

          So, I got that information from a different Lemmy comment, and on the spur of your contradiction I went looking myself. My search results are flooded with mostly useless news articles (they went to tell stories, not relay technical information). Regardless, the most ambitious claim I’ve seen is to reduce emissions by up to 90% for a ship design that can’t handle shipping containers and is about 1/4 the size of the largest ships being produced today.

          Don’t get me wrong, I want this to happen. In fact, I would ban carbon-fuel shipping today, if I could make it happen. That being said, I don’t think we’ll ever get back to 100% wind power.

          • Lev_Astov
            link
            fedilink
            1
            edit-2
            9 months ago

            The sail kite project has had claims of up to 10% fuel savings for about 20 years, now.

            It’s all moot when we should just be focusing on figuring out practical nuclear shipping. It’s the only way to meet or exceed our current standard and be carbon-free. The NS Savannah proved it could be profitable ages ago, and that without any economy of scale to reduce costs.

        • Tug
          link
          fedilink
          19 months ago

          They found out rhe hard way with the Ever Given

          • @eskimofry@lemmy.world
            link
            fedilink
            19 months ago

            Hmm i feel like there it was a case of working against the ocean whereas here I think it is working with the wind so it shouldn’t be THAT bad… but who knows…

            • Tug
              link
              fedilink
              19 months ago

              It was more a comment on the power of wind on a modern container ship.

      • Why can I only think of that journey to the center of the earth movie with the kite sail and had the one dude browsing google with the PSP. Why can I only remember two things from that movie?