• @bitcrafter
    link
    English
    41 year ago

    The home page for it is here. It’s based on a result known as the Gottesman-Knill Theorem which shows (constructively, i.e. providing a concrete algorithm) that quantum circuits consisting solely of Clifford gates (that is, CNOT + Hadamard + Phase, hence CHP) can be simulated efficiently classically.

    • @CanadaPlus
      link
      English
      21 year ago

      Hmm, interesting. Which gates are missing if you want to, say, implement a Quantum Fourier transform?

      • @bitcrafter
        link
        English
        31 year ago

        There are lots of possible choices of universal gate sets. However, if you are starting with Clifford gates, then it turns out to be sufficient for you to add support for a T=sqrt(S) gate; essentially T and H have the property that these two gates by themselves are sufficient to efficiently approximate any 1-qubit gate arbitrarily well (by combining these discrete rotations about the two different angles in the Bloch sphere in specific ways via the Solovay-Kitaev Theorem), and being able to perform an arbitrary 1-qubit gate and having access to an entangling 2-qubit gate (CNOT) lets you extend this to an efficient arbitrarily good approximation of any gate on an any number of qubits.