• Limitless_screaming
    link
    fedilink
    298 months ago

    If you have two charges q1 and q2, you can get the force between them F by multiplying them with the coulomb constant K (approximately 9 × 10^9) and then dividing that by the distance between them squared r^2.

    q1 and q2 cannot be negative. Sometimes you’ll not be given a charge, and instead the problem will tell you that you have a proton or electron, both of them have the same charge (1.6 × 10^-19 C), but electrons have a negative charge.

    • pewter
      link
      fedilink
      208 months ago

      q1 and q2 can be negative. The force is the same as if they were positive because -1 x -1 = 1

      • Limitless_screaming
        link
        fedilink
        48 months ago

        In this case yes, but if q1 was -20μC, q2 was 30μC, and r was 0.5m, then using -20μC as it is would make F equal to -21.6N which is just 21.6N of attraction force between the two charges.

        • Pelicanen
          link
          fedilink
          58 months ago

          If they are oppositely charged particles, I would expect that there is a force of attraction acting on them, yes.

      • @Pinklink@lemm.ee
        link
        fedilink
        0
        edit-2
        8 months ago

        But that if both are negative not one pos one neg like the previous commenter gave in their examples, so the true formula has an absolute value in the numerator: |q1Xq2|